
Creative Software Design

7 – Standard Template Library

Yoonsang Lee

Fall 2021

Midterm Exam

• Time: Oct 26, 09:00 ~ 11:00 am (may end earlier)

• Monitored online exam

• Scope: Lecture 2 ~ 7

– Assignments of this scope might be used as exam

problems

• Problem types: true/false, single choice, multiple

choices, short answer, fill-in-blank, ...

Today's Topics

• Intro to Template (briefly)

• STL (Standard Template Library)

• Containters

– std::vector, std::list

– std::stack, std::queue

– std::set, std::map

• Iterator

• Algorithm

• std::string

Template

● Functions and classes can be "templated".

● This allows a function or class to work on many different data types

without being rewritten for each one.

An example of class template

Standard Template Library (STL)

● STL defines powerful, template-based, reusable components.

● A collection of useful template for handling various kinds of data

structure and algorithms

○ Containers: data structures that store objects of any type

○ Iterators: used to manipulate container elements

○ Algorithms: operations on containers for searching, sorting and

many others

Containers

• Sequential container, Container adaptor, Associative container

• Sequential container

– Elements are accessed by their "position" in the sequence.

– vector: fast insertion at end, random access

– list: fast insertion anywhere, sequential access

– deque (double-ended queue): fast insertion at either end, random access

• Container adapter

– “Adapting” the interface of underlying container to provide the desired
behavior.

– stack: Last In First Out (based on std::deque by default)

– queue: First In First Out (based on std::deque by default)

accessing any element in the container has the same
cost as any other element

increasing cost associated with an elements position
in the container (e.g. accessing the 5th element is 5
times the cost of accessing the first element)

Containers

• Associative container

– Elements are referenced by their key and not by their absolute
position in the container, and always sorted by keys.

– map: a mapping from one type (key) to another type (value) (each
key in the container is unique)

– set: stores data as key (each key in the container is unique), fast
adding or deleting elements, querying for membership…

• There are a few more containers in STL, but this course
covers only the most popular ones.

std::vector - a resizable array

std::vector - a resizable array

std::vector - a resizable array

● You can make a vector of strings or other classes.

#include <string>

#include <vector>

using namespace std;

struct Complex { double real, imag; /* ... */ };

// ...

vector<string> vs;

for (int i = 0; i < 10; ++i) cin >> vs[i];

// vector(size, initial_value)

vector<string> vs2(5, "hello world");

vector<Complex> v1(10);

vector<Complex> v2(10, Complex(1.0, 0.0));

Complex c(0.0, 0.0);

v2.push_back(c);

for (int i = 0; i < v2.size(); ++i) {

cout << v2[i].real << "+" << v2[i].imag << "i" << endl;

}

std::vector - a resizable array

● Sometimes you may want to use a vector of pointers.

#include <vector>

using namespace std;

class Student;

vector<Student*> vp(10, NULL);

for (int i = 0; i < vp.size(); ++i) {

vp[i] = new Student;

}

// After using vp, all elements need to be deleted.

for (int i = 0; i < vp.size(); ++i) delete vp[i];

vp.clear();

std::vector - a resizable array

std::vector

• Element are stored in contiguous storage, like an array.

• Random access (by index): Fast access to any element

• Fast addition/removal of elements at the end of the

sequence.

• Much more flexible and powerful than array. From

now on, use std::vector instead of array.

– https://www.stroustrup.com/bs_faq2.html#arrays

https://www.stroustrup.com/bs_faq2.html#arrays

References for STL

• std::vector

– http://www.cplusplus.com/reference/vector/vector/

• STL containers

– http://www.cplusplus.com/reference/stl/

• You can find documents for any other STL features

in these links.

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/stl/

Iterator

• Iterator: a pointer-like object pointing to an element in
a container.

• Iterators provide a generalized way to traverse and
access elements stored in a container.

– can be ++ or -- (move to next or prev element)

– dereferenced with *

– compared against another iterator with == or !=

• Iterators are generated by STL container member
functions, such as begin() and end().

std::vector with iterator

std::vector with iterator

#include <vector>

#include <iostream>

using namespace std;

int main(void) {

// vector(sz)

vector<int> v(10);

for (int i = 0; i < v.size(); ++i) v[i] = i;

// begin(), end()

for (vector<int>::iterator it = v.begin(); it != v.end(); ++it) {

cout << " " << *it;

}

// Output: 0 1 2 3 4 5 6 7 8 9

// rbegin(), rend()

for (vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it) {

cout << " " << *it;

}

// Output: 9 8 7 6 5 4 3 2 1 0

}

Meaning of begin(), end(), rbegin(), rend()

Quiz #1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in this

format to be counted as attendance.

https://www.slido.com/

Concept of Linked List

● Singly linked list: A node consists of the data and a link to the next node.

● Doubly linked list: with links to prev. & next node.

Concept of Linked List: insert

Concept of Linked List: erase

std::list

• Implemented as a doubly-linked list.

– Non-contiguous storage.

• Sequential access

– One should iterate from a known position (like begin()

or end()) to access to some element.

• Fast addition/removal of elements anywhere in the

container.

std::list – an insert and erase example

iter =

2

3

An iterator that points to the first of the newly inserted
elements.

std::list – an erase and remove example

An iterator pointing to the new location of the element that
followed the last element erased by the function call.

Concept of Stack : Last In First Out

std::stack - example

Concept of Queue : First In First Out

std::queue - example

Table for STL Sequential Containers

vector list stack queue deque

Random access operator[]

at()

- - - operator[]

at()

Sequential access front()

back()

front()

back()

top() front()

back()

front()

back()

Iterators begin(), end()

rbegin(), rend()

begin(), end()

rbegin(), rend()

- - begin(), end()

rbegin(), rend()

Adding elements push_back()

insert()

push_front()

push_back()

insert()

push() push() push_front()

push_back()

insert()

Deleting elements pop_back()

erase()

clear()

pop_front()

pop_back()

erase()

clear()

pop() pop() pop_front()

pop_back()

erase()

clear()

Adjusting size resize()

reserve()

resize() - - resize()

std::map

• Contains key-value pairs with unique keys.

• Associative: Elements are referenced by their key,

and always sorted by keys.

• Accessing with keys is efficient.

std::map - example

std::set

• Contains unique keys.

• Associative: Elements are referenced by their key,

and always sorted by keys.

• Accessing with keys is efficient.

std::set - example

#include <set>

using namespace std;

set<int> s;

for (int i = 0; i < 10; ++i) s.insert(i * 10);

for (set<int>::const_iterator it = s.begin(); it != s.end(); ++it) {

cout << " " << *it; // s: 0 10 20 30 40 50 60 70 80 90

}

cout << s.size();

cout << s.empty();

set<int>::iterator it, it_low, it_up;

it = s.find(123); // it == s.end()

// s: 0 10 20 30 40 50 60 70 80 90

it = s.find(50); // ^it

s.clear(); // s:

Quiz #2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in this

format to be counted as attendance.

https://www.slido.com/

Iterator again

• Iterators provide a generalized way to traverse and

access elements stored in a container (regardless of

the container type).

• Iterators serve as an interface for various kinds of

containers.

• Passing and returning iterators makes an algorithms

more generic, because the algorithms will work for

any containers.

Algorithm

● Many useful algorithms are available

● sort

● min, max, min_element, max_element

● binary_search

std::sort

void sort(RandomAccessIterator first, RandomAccessIterator last);
Void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp)

std::min, std::max,

std::min_element, std::max_element

std::string - constructor

● In C++, STL provides a powerful string class.

• Returns a pointer to a null-terminated string array

representing the current value of the string object.

(Recall) std::string - c_str()

#include <string>

std::string str = "hello world";

const char* ptr = str.c_str();

printf("%s\n", ptr);

// ...

std::string str1 = str + " - bye world";

assert(str1 == "hello world - bye world");

assert(str.length() > 10);

assert(str[0] == 'h');

str[0] = 'j';

str.resize(5);

assert(str == "jello");

// check out http://www.cplusplus.com/reference/string/string/

// resize(), substr(), find(), etc.

ptr

str

h e l l o w o r l d \0

(Recall) std::string - input

std::string str;

std::cin >> str; // read a word (separated by a space, tab, enter)

std::getline(cin, str); // read characters until the default

// delimiter '\n' is found

std::getline(cin, str, ':'); // read characters until the delimiter

// ':' is found

(Recall) std::string - input

• Note that std::string automatically resize to the

length of target string.

std::string - input from file

std::string - find

#include <iostream>

#include <string>

using namespace std;

int main() {

string str("There are two needles in this haystack with needles.");

string str2("needle");

size_t found;

if ((found = str.find(str2)) != string::npos) {

cout << "first 'needle' found at: " << int(found) << endl;

}

str.replace(str.find(str2), str2.length(), "preposition");

cout << str << endl;

return 0;

}

size_t find(const string& str, size_t pos = 0) const;

size_t find(char c, size_t pos = 0) const;

[from http://www.cplusplus.com/]

first 'needle' found at: 14

There are two prepositions in this haystack with needles.

std::string - substr

#include <iostream>

#include <string>

using namespace std;

int main() {

string str = "We think in generalities, but we live in details.";

// quoting Alfred N. Whitehead

string str2 = str.substr(12, 12); // "generalities"

size_t pos = str.find("live"); // position of "live" in str

string str3 = str.substr(pos); // get from "live" to the end

cout << str2 << ' ' << str3 << endl;

}

string substr(size_t pos = 0, size_t n = npos) const;

[from http://www.cplusplus.com/]

generalities live in details.

Quiz #3

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in this

format to be counted as attendance.

https://www.slido.com/

Next Time

• Labs in this week:

– Lab1: Assignment 7-1

– Lab2: Assignment 7-2

• Midterm exam next Tuesday. No lecture & labs

next week!

• Next lecture (the week after next):

– 8 - Inheritance, Const & Class

